Concrete Construction Engineering Handbook
Second Edition
Cover Image: Veterans’ 1-280 Glass City Skyway, Toledo, Ohio, 612-ft twin cable-stayed spans with 403-ft pylon. The top 196 ft of the pylon features four sides of glass enveloping LED light fixtures that allow an array of as many as 16.7 million color combinations at night. The bridge construction involved 185,000 cubic yards of concrete, 1.9 million lb of post-tensioning strands, and 32.6 million lb of mild steel reinforcement. The bridge was opened in June 2007. (Photos courtesy of Ms. Linda Figg, President and CEO, FIGG, Tallahassee, Florida. Owner: Ohio Department of Transportation. Designer: FIGG. Contractor: Fru-Con.)
Contents

1 Concrete Constituent Materials
1.1 Introduction ... 1-1
1.2 Portland Cement .. 1-2
1.3 Modified Portland Cements .. 1-9
1.4 High-Alumina Cement ... 1-10
1.5 “Green” Cements .. 1-11
1.6 Performance of Different Cements in Concrete .. 1-11
1.7 Water .. 1-12
1.8 Water/Cement Ratio ... 1-12
1.9 Aggregates .. 1-14
1.10 Reinforcement ... 1-21
1.11 Durability Considerations .. 1-23
References ... 1-26

2 Mineral Admixtures
2.1 Fly Ash ... 2-1
2.2 Blast-Furnace Slag ... 2-18
2.3 Silica Fume .. 2-29
2.4 Highly Reactive Metakaolin .. 2-38
References ... 2-42

3 Chemical Admixtures
3.1 Introduction to Chemical Admixtures.. 3-1
3.2 Retarding Admixtures .. 3-2
3.3 Water-Reducing Admixtures ... 3-3
3.4 High-Range, Water-Reducing Admixtures .. 3-5
3.5 Accelerating Admixtures ... 3-7
3.6 Air-Entraining Admixtures ... 3-10
3.7 Antifreezing Admixtures ... 3-12
3.8 Antiwashout Admixtures .. 3-13
3.9 Shrinkage-Reducing Admixtures ... 3-14
3.10 Polymer Modifier Admixtures ... 3-14
3.11 Alkali–Silica Reaction Prevention Admixtures .. 3-18
3.12 Conclusion .. 3-18
References ... 3-18

4 Long-Term Effects and Serviceability
4.1 Creep and Shrinkage Deformations in Concrete ... 4-1
4.2 Creep Deformations in Concrete ... 4-2
4.3 Creep Prediction .. 4-6
4.4 Shrinkage in Concrete ... 4-10
4.5 Strength and Elastic Properties of Concrete vs. Time ... 4-16
4.6 Serviceability Long-Term Considerations .. 4-18
5 Properties and Performance of Normal-Strength and High-Strength Concrete

5.1 Introduction ... 5-1
5.2 Workability, Bleeding, and Consolidation 5-2
5.3 Mixing, Transporting, and Placing Concrete 5-3
5.4 Permeability .. 5-4
5.5 Carbonation .. 5-5
5.6 Early-Age Characteristics and Strength 5-6
5.7 Density ... 5-7
5.8 Abrasion Resistance .. 5-8
5.9 Volume Change and Crack Control 5-9
5.10 Deformation and Creep ... 5-10
5.11 Concrete Ingredients ... 5-11
5.12 Proportioning of Concrete Mixtures 5-12
5.13 Sulfate-Resistant Concrete .. 5-13
5.14 Control Tests .. 5-14
5.15 Freeze–Thaw and Deicer Scaling Resistance 5-15
5.16 Corrosion Protection .. 5-16
5.17 Sulfate-Resistant Concrete .. 5-17
5.18 Alkali–Silica Reaction .. 5-18
5.19 Heat-Induced Delayed Expansion 5-19
5.20 Deformation and Creep ... 5-20
5.21 Related ASTM Standards .. 5-21
5.22 References ... 5-22

6 Design and Placement of Concrete Mixtures 6-1

6.1 General ... 6-2
6.2 Selection of Constituent Materials 6-3
6.3 Mixture Proportioning for High-Performance, Normal-Strength Concrete (Cylinder Compressive Strength Limit 6000 psi) 6-4
6.4 Mixture Proportioning for High-Performance, High-Strength Concrete (Cylinder Compressive Strength Exceeding 6000 psi) 6-5
6.5 Applications and Constructability 6-6
6.6 Job-Site Control ... 6-7
6.7 Testing ... 6-8
6.8 Related ASTM Standards .. 6-9
6.9 References ... 6-10

7 Design and Construction of Concrete Formwork

7.1 Introduction ... 7-1
7.2 Types of Formwork .. 7-2
7.3 Formwork Standards and Recommended Practices 7-3
7.4 Loads and Pressures on Formwork 7-4
7.5 Formwork Design Criteria .. 7-5
7.6 Formwork Design ... 7-6
7.7 Slab-Form Design Example ... 7-7
7.8 Wall-Form Design Example ... 7-8
7.9 References ... 7-9
Contents

8 Construction Loading in High-Rise Buildings
* S.K. Ghosh

- **8.1 Introduction** ... 8-1
- **8.2 Construction Loads** .. 8-1
- **8.3 Properties of Concrete at Early Ages** 8-19
- **8.4 Strength Consequences of Construction Loads** 8-37
- **8.5 Serviceability Consequences of Construction Loads** 8-47
- **8.6 Codes and Standards** .. 8-55

References ... 8-58

9 Deflection of Concrete Members
* Russell S. Fling and Andrew Scanlon

- **9.1 Introduction** ... 9-1
- **9.2 Elastic Calculation Methods** .. 9-2
- **9.3 Other Calculation Considerations** 9-6
- **9.4 Factors Affecting Deflection** .. 9-10
- **9.5 Reducing Deflection of Concrete Members** 9-16
- **9.6 Allowable Deflections** ... 9-20

References ... 9-22

10 Structural Concrete Systems
* Scott W. McConnell

- **10.1 Overview** ... 10-1
- **10.2 Building Loads** .. 10-3
- **10.3 Composite Steel–Concrete Construction** 10-7
- **10.4 Foundations** ... 10-10
- **10.5 Structural Frames** ... 10-14
- **10.6 Concrete Slab and Plate Systems** 10-17
- **10.7 Liquid-Containing Structures** 10-23
- **10.8 Mass Concrete** .. 10-26
- **10.9 On-Site Precasting and Tilt-Up Construction** 10-28
- **10.10 Lift-Slab Construction** .. 10-30
- **10.11 Slip-Form Construction** .. 10-33
- **10.12 Prestressed Concrete** .. 10-37

Acknowledgments .. 10-40

References ... 10-40

11 Construction of Prestressed Concrete
* Ben C. Gerwick, Jr.

- **11.1 Introduction** ... 11-1
- **11.2 Concrete and Its Components** 11-4
- **11.3 Reinforcement and Prestressing Systems** 11-8
- **11.4 Special Provisions for Prestressed Concrete Construction** 11-13
- **11.5 Post-Tensioning Technology** 11-19
- **11.6 Pretensioning Technology** .. 11-24
- **11.7 Prestressed Concrete Buildings** 11-29
- **11.8 Prestressed Concrete Bridges** 11-33
- **11.9 Prestressed Concrete Piling** 11-46
- **11.10 Tanks and Other Circular Structures** 11-54
- **11.11 Prestressed Concrete Sleeper (Ties)** 11-55
- **11.12 Prestressed Concrete Floating Structures** 11-56
- **11.13 Prestressed Concrete Pavements** 11-58
- **11.14 Maintenance, Repair, and Strengthening of Existing Prestressed Concrete Structures** 11-58
- **11.15 Demolition of Prestressed Concrete Structures** 11-60
- **11.16 The Future of Prestressed Concrete Construction** 11-61

Acknowledgments .. 11-62

References ... 11-62
Contents

17 Joints in Concrete Construction
Edward G. Nawy ... 17-1

17.1 Introduction .. 17-1
17.2 Construction Joints .. 17-2
17.3 Contraction Joints ... 17-3
17.4 Expansion Joints ... 17-4
17.5 Joints in Slabs on Grade and Pavements 17-10

References .. 17-15

18 Automation in Concrete Construction
Miroslaw J. Skibniewski and Raghavan Kamigahalli 18-1

18.1 Categories of Construction Automation 18-1
18.2 Automated Construction Equipment and Related Hardware 18-1
18.3 Economics and Management of Robots 18-7
18.4 Computer-Aided Design .. 18-8
18.5 Conclusions and Future Activities .. 18-16

References .. 18-17

19 Equipment for Concrete Building Construction
Aviad Shapira ... 19-1

19.1 Introduction .. 19-1
19.2 Equipment Selection ... 19-2
19.3 Concrete Equipment ... 19-12
19.4 Cranes ... 19-21
19.5 Truck Loaders ... 19-43
19.6 Belt Conveyors ... 19-45
19.7 Material Handlers ... 19-45
19.8 Hoists and Lifts ... 19-47
19.9 Mechanized Form Systems .. 19-48

Acknowledgment ... 19-51

References .. 19-51

20 Roller-Compacted Concrete
Ernest K. Schrader ... 20-1

20.1 Introduction .. 20-1
20.2 Advantages and Disadvantages .. 20-7
20.3 Aggregates and Mixture Proportions ... 20-11
20.4 Material Properties .. 20-21
20.5 Design ... 20-40
20.6 Construction ... 20-54
Defining Terms ... 20-70

References .. 20-71

21 Nondestructive Test Methods
Nicholas J. Carino ... 21-1

21.1 Introduction .. 21-1
21.2 Methods to Estimate In-Place Strength 21-2
21.3 Methods for Flaw Detection and Condition Assessment 21-23
21.4 Concluding Remarks ... 21-62

References .. 21-63

22 Fiber-Reinforced Composites
Edward G. Nawy ... 22-1

Part A Fiber-Reinforced Concrete ... 22-1

22.1 Historical Development ... 22-2
22.2 General Characteristics .. 22-2
22.3 Mixture Proportioning ... 22-4
22.4 Mechanics of Fiber Reinforcement .. 22-5
22.5 Mechanical Properties of Fibrous Concrete Structural Elements 22-8
22.6 Steel-Fiber-Reinforced Cement Composites 22-14
22.7 Prestressed Concrete Prism Elements as the Main 22-17

Composite Reinforcement in Concrete Beams 22-17

© 2008 by Taylor & Francis Group, LLC
Contents

28 Masonry Design and Construction Jason J. Thompson ... 28-1
28.1 Introduction ... 28-1
28.2 Masonry Design and Construction Codes and Standards ... 28-2
28.3 Definitions .. 28-2
28.4 Materials ... 28-4
28.5 Construction .. 28-15
28.6 Testing and Inspection .. 28-27
28.7 General Detailing .. 28-28
28.8 Project Specifications ... 28-38
28.9 Structural Design .. 28-39
28.10 Summary .. 28-40
Acknowledgment .. 28-41
References .. 28-46

29 Aesthetics in the Construction and Design of Long-Span Prestressed Concrete Bridges Linda Figg ... 29-1
29.1 Aesthetics in Concrete Bridges .. 29-1
29.2 Conceptual Design .. 29-4
29.3 Environmental Sensitivity ... 29-9
29.4 Construction Methods .. 29-11
29.5 Concrete Bridge Shapes for Construction ... 29-17
29.6 Concrete Aesthetic Features .. 29-23
29.7 Design Details .. 29-28
29.8 Summary .. 29-31

30 Architectural Concrete Allan R. Kenney and Sidney Freedman;
updated by James M. Shilstone ... 30-1
30.1 History of Architectural Cast-in-Place Concrete ... 30-2
30.2 History of Architectural Precast Concrete ... 30-4
30.3 Applications ... 30-5
30.4 Planning ... 30-6
30.5 Materials–Mixture Design ... 30-12
30.6 Color and Texture ... 30-19
30.7 Construction: Cast-in-Place Concrete .. 30-32
30.8 Production and Installation of Precast Elements .. 30-60
30.9 Finish Cleanup .. 30-68
30.10 Acceptability of Appearance ... 30-72
30.11 Innovations .. 30-72
30.12 Defining Terms ... 30-73
References .. 30-74

31 Fire Resistance and Protection of Structures Mark B. Hogan and Jason J. Thompson 31-1
31.1 Introduction ... 31-1
31.2 Fire-Resistance Ratings ... 31-5
31.3 Fire Protection of Joints ... 31-9
31.4 Finish Treatments .. 31-11
31.5 Fire Resistance of Columns .. 31-11
31.6 Steel Columns Protected by Masonry ... 31-13
31.7 Fire Resistance of Lintels ... 31-14
References .. 31-14

32 Seismic-Resisting Construction Walid M. Naja and Christopher T. Bane 32-1
32.1 Fundamentals of Earthquake Ground Motion ... 32-2
32.2 International Building Code (IBC 2006) ... 32-7
32.3 Design and Construction of Concrete and Masonry Buildings 32-29
32.4 Seismic Retrofit of Existing Buildings ... 32-42
32.5 Seismic Analysis and Design of Bridge Structures ... 32-48
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.6</td>
<td>Retrofit of Earthquake-Damaged Bridges</td>
<td></td>
<td></td>
<td>32-56</td>
</tr>
<tr>
<td>32.7</td>
<td>Defining Terms</td>
<td></td>
<td></td>
<td>32-62</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td>32-62</td>
</tr>
<tr>
<td>33</td>
<td>Prefabricated Bridge Elements and Systems</td>
<td>Michael M. Sprinkel</td>
<td></td>
<td>33-1</td>
</tr>
<tr>
<td>33.1</td>
<td>Practical Applications</td>
<td></td>
<td></td>
<td>33-1</td>
</tr>
<tr>
<td>33.2</td>
<td>Types of Elements</td>
<td></td>
<td></td>
<td>33-3</td>
</tr>
<tr>
<td>33.3</td>
<td>Construction Considerations</td>
<td></td>
<td></td>
<td>33-15</td>
</tr>
<tr>
<td>33.4</td>
<td>Looking Ahead</td>
<td></td>
<td></td>
<td>33-16</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td>33-16</td>
</tr>
<tr>
<td>34</td>
<td>Design of Precast Concrete Seismic Bracing Systems</td>
<td>Robert E. Englekirk</td>
<td></td>
<td>34-1</td>
</tr>
<tr>
<td>34.1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td>34-1</td>
</tr>
<tr>
<td>34.2</td>
<td>Basic Concepts</td>
<td></td>
<td></td>
<td>34-2</td>
</tr>
<tr>
<td>34.3</td>
<td>Precast Concrete Seismic Moment-Resisting Ductile Frame Systems</td>
<td></td>
<td></td>
<td>34-7</td>
</tr>
<tr>
<td>34.4</td>
<td>The Conceptual Design Process</td>
<td></td>
<td></td>
<td>34-18</td>
</tr>
<tr>
<td>34.5</td>
<td>Concluding Remarks</td>
<td></td>
<td></td>
<td>34-24</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td>34-24</td>
</tr>
<tr>
<td>35</td>
<td>Cracking Mitigation and Maintenance Considerations</td>
<td>Florian G. Barth</td>
<td></td>
<td>35-1</td>
</tr>
<tr>
<td>35.1</td>
<td>Overview of Crack Mitigation</td>
<td></td>
<td></td>
<td>35-1</td>
</tr>
<tr>
<td>35.2</td>
<td>Member Selection</td>
<td></td>
<td></td>
<td>35-2</td>
</tr>
<tr>
<td>35.3</td>
<td>Crack Causes and Types</td>
<td></td>
<td></td>
<td>35-2</td>
</tr>
<tr>
<td>35.4</td>
<td>Crack Mitigation Measures</td>
<td></td>
<td></td>
<td>35-7</td>
</tr>
<tr>
<td>35.5</td>
<td>Crack Evaluation Summary</td>
<td></td>
<td></td>
<td>35-12</td>
</tr>
<tr>
<td>35.6</td>
<td>Maintenance</td>
<td></td>
<td></td>
<td>35-13</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td>35-18</td>
</tr>
<tr>
<td>36</td>
<td>Proportioning Concrete Structural Elements by the ACI 318-08 Code</td>
<td>Edward G. Nawy</td>
<td></td>
<td>36-1</td>
</tr>
<tr>
<td>36.1</td>
<td>Material Characteristics</td>
<td></td>
<td></td>
<td>36-2</td>
</tr>
<tr>
<td>36.2</td>
<td>Structural Design Considerations</td>
<td></td>
<td></td>
<td>36-5</td>
</tr>
<tr>
<td>36.3</td>
<td>Strength Design of Reinforced-Concrete Members</td>
<td></td>
<td></td>
<td>36-10</td>
</tr>
<tr>
<td>36.4</td>
<td>Prestressed Concrete</td>
<td></td>
<td></td>
<td>36-31</td>
</tr>
<tr>
<td>36.5</td>
<td>Shear and Torsion in Prestressed Elements</td>
<td></td>
<td></td>
<td>36-34</td>
</tr>
<tr>
<td>36.6</td>
<td>Walls and Footings</td>
<td></td>
<td></td>
<td>36-36</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td></td>
<td></td>
<td>36-36</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td>36-36</td>
</tr>
</tbody>
</table>
A great need has existed for an in-depth handbook on concrete construction engineering and technology that can assist the constructor in making correct technical judgments in the various areas of constructed systems. This Handbook is intended to fill this very need. This edition is completely updated and includes ten new chapters written by leading experts on various topics dealing with the state of the art in several newly developed areas of concrete construction and design engineering. All chapters treat their particular subjects with extensive detail and depth of discussion, a feature that is lacking in any comparable texts. Also, each chapter provides selected references for the user to consult for further research beyond the scope of the Handbook. The topics covered here are state-of-the-art statements regarding what the design engineer and the constructor should know about concrete, the most versatile material of the 21st century. These topics can be grouped into five categories:

1. **Latest advances in engineered concrete materials**, including concrete constituents, high-performance concretes, the design of mixtures for both normal- and high-strength concretes, and special concrete applications such as architectural concrete
2. **Reinforced concrete construction**, including recommendations on the vast array of types of constructed facilities, long-term effects on behavior and performance such as creep and shrinkage, construction loading effects, formwork and falsework proportioning, and automation in construction
3. **Specialized construction**, such as prestressed concrete construction in buildings and transportation facilities; construction and proportioning of structures in seismic zones (including the latest provisions of the 2006 International Building Code on the design of structures in high-seismicity zones); masonry construction; heavy concrete construction, such as roller-compacted concrete; and concrete marine structures, such as offshore platforms concrete
5. **Specialized topics on new materials**, such as engineered concrete composites, geopolymer concrete, equipment for concrete building construction, joints in concrete structures, design of precast seismic bracing systems, detailed design of fiber-reinforced polymers (FRP), and aesthetics in long-span bridge construction

The 37 contributors to this new edition of the Handbook are leading authorities in the field, with a combined professional practice of at least 1200 years. All of them are national or international leaders in research, design, and construction. This Handbook is the only publication in this category that has in a single chapter a summary of all concrete design expressions in accordance with the latest ACI 318-08 Building Code for flexure, shear, torsion, strut-and-tie design of corbels and deep beams, compression, long-term effects, slender columns, and development of reinforcement. Both PI (in.-lb) and SI formats are provided. A design office will be able to quickly review all of the latest requirements for structural concrete. This Handbook should enable designers, constructors, educators, and field personnel to produce the best and most durably engineered constructed facilities. It is for these professionals that this Handbook was written in the hope that the wealth of the most up-to-date knowledge embodied in this comprehensive work will provide, in this dynamic century, vastly better, more efficient, and longer enduring constructed concrete.

© 2008 by Taylor & Francis Group, LLC
I consider myself lucky to have had the chance to work with such outstanding world-class experts in developing this Handbook. My gratitude and thanks are extended to all of the authors, who, busy as they are, have shared their vast experience gained from extensive years of engineering and construction practice at the highest levels. Acknowledgment and thanks are due to the American Concrete Institute for permitting unrestricted use by the various authors of its vast technical resources of publications and to Prentice Hall/Pearson Education (Addison Wesley Longman) for permitting me to use material originally published in my three textbooks with them. Thanks are also due to Linda Figg for her input to the handsome jacket of the Handbook and to Christy Gray, of her staff, for developing its several versions.

Deep appreciation and gratitude are extended to the staff at Taylor & Francis for the hard work required to bring to fruition this second edition of such a major text: Nora Konopka, Publisher, who has always been considerate, decisive, and supportive throughout the lengthy development of this edition of the Handbook and the previous edition; Joseph Clements, Acquisitions Editor, for his valuable input and cooperation; Theresa Delforn, Production Manager, for her initial work on the manuscript; Jill Jurgensen, Production Coordinator, for her critical input; and Christine Andreasen, Project Editor, for keeping the production process on track. Thank you, too, to the compositor, Sarah Nicely Fortener, Nicely Creative Services.

Last, but not least, acknowledgment is due to my wife, Rachel, who has had enduring patience and given unlimited support while I was totally immersed in the development of the Handbook.

Edward G. Nawy
Rutgers University
Piscataway, New Jersey
Edward G. Nawy, distinguished professor, Department of Civil and Environmental Engineering, Rutgers, the State University of New Jersey, is internationally recognized for his extensive research work in the fields of reinforced and prestressed concrete, particularly in the areas of serviceability and crack control. He has practiced civil and structural engineering in excess of 50 years and has been on the faculty of Rutgers University almost as long, having served as chairman and graduate director for two terms. He also served two terms on the Board of Governors and one term on the Board of Trustees of the University.

His work has been published in technical journals worldwide and includes over 180 technical papers. He has been a keynote speaker for several international technical conferences and has been the editor of several Special Publication volumes of the American Concrete Institute since 1972. He is the author of several textbooks, including *Simplified Reinforced Concrete*, *Reinforced Concrete: A Fundamental Approach*, and *Prestressed Concrete: A Fundamental Approach*, all published by Prentice Hall and which have been translated into Spanish, Chinese, South Korean, and Malaysian. He is also the author of *Fundamentals of High-Performance Concrete* (John Wiley & Sons) and has contributed chapters to several handbooks, including the *Handbook of Structural Concrete* (McGraw-Hill) and the *Engineering Handbook* (CRC Press).

Dr. Nawy is an honorary member (formerly Charter Fellow, 1972) of the American Concrete Institute, Fellow of the American Society of Civil Engineers, Fellow of the Institution of Civil Engineers (London), and a member of the Precast/Prestressed Concrete Institute. He has chaired several committees of the American Concrete Institute, including ACI Committee 224 on Cracking and ACI Committee 435 on Deflection of Structures. He is also a member of the ACI–ASCE Joint Committee on Slabs; ACI Committee 340 on the *Strength Design Handbook*, for which he served as the chairman of its Subcommittee on Two-Way Slabs and Plates; and the Technical Activities Committee of the Precast/Prestressed Concrete Institute.

Major awards he has received include the Henry L. Kennedy Award and the Design Practice Award of the American Concrete Institute, as well as Honorary Professorship of the Nanjing Institute of Technology, Nanjing, China. He is a licensed professional engineer in the states of New York, New Jersey, Pennsylvania, California, and Florida; a chartered civil engineer in the United Kingdom and the Commonwealth; a program evaluator for the National Accreditation Board for Engineering and Technology (ABET); a panelist for the National Science Foundation, Washington, D.C.; a university representative to the Transportation Research Board, Washington, D.C.; and a former chairman and subsequently Emeritus Honor member of the TRB Committee on Concrete Materials, National Research Council. He has been an engineering consultant to agencies throughout the United States, particularly in areas of structures and materials forensic engineering. He has been listed in *Who's Who in America* since 1967, in *Who's Who in Engineering*, and in *Who's Who in the World*, as well as in several other major standard reference works.
Contributors

John Albinger
President, T.H. Davidson and Company
Chicago, Illinois

Christopher T. Bane, S.E.
Senior Project Engineer
FBA, Inc.
Hayward, California

Lawrence C. Bank, Ph.D., P.E., FASCE
Professor, Civil and Environmental Engineering Department
University of Wisconsin
Madison, Wisconsin

Florian G. Barth, P.E.
President, American Concrete Institute
Principal Consultant, FBA, Inc.
Hayward, California

Nicholas J. Carino, Ph.D. [retired]
Research Structural Engineer
National Institute of Standards and Technology
Gaithersburg, Maryland

Robert E. Englekirk, Ph.D., S.E.
Chairman Emeritus, Englekirk Companies
Adjunct Professor, Structural Engineering Department
University of California
San Diego, California

Linda Figg
President (CEO)/Director
Bridge Art, Figg Engineering Group
Tallahassee, Florida

Russell S. Fling, P.E. [retired]
Consulting Structural Engineer
Columbus, Ohio

Sidney Freedman
Director, Architectural Precast Concrete Services
Precast/Prestressed Concrete Institute
Chicago, Illinois

Ben C. Gerwick, Jr., P.E., S.E. [deceased]
Senior Technical Consultant, Honorary Chairman
Ben C. Gerwick, Inc.
San Francisco, California

S.K. Ghosh, Ph.D., P.E.
President
Palatine, Illinois

Manjriker Gunaratne, Ph.D., P.E.
President
Manjriker Gunaratne, Inc.
Tampa, Florida

S.K. Hoff, D.Eng., P.E.
President
Hoff Consulting, LLC
Clinton, Mississippi

Mark B. Hogan, P.E.
Vice President of Engineering
National Concrete Masonry Association
Herndon, Virginia

David W. Johnston, Ph.D., P.E.
Professor and Associate Head,
Civil, Construction, and Environmental Engineering Department
North Carolina State University
Raleigh, North Carolina

Allan R. Kenney, P.E.
President
Precast Systems Consultants, Inc.
Venice, Florida

© 2008 by Taylor & Francis Group, LLC
Steven H. Kosmatka, P.E.
Staff Vice President, Research and Technical Services
Portland Cement Association
Skokie, Illinois

Raghavan Kunigahalli, Ph.D.
Technology Officer, Office of the CIO/CTO
American International Group
Jersey City, New Jersey

Victor C. Li, Ph.D., FASCE, FASME, FWIF
E. Benjamin Wylie Collegiate Chair Professor, Civil and Environmental Engineering Departments
University of Michigan
Ann Arbor, Michigan

Scientist Emeritus
CANMET, Natural Resources Canada
Ottawa, Canada

Scott W. McConnell, P.E.
Principal and Director, Structural Department
CMX Engineers and Consultants
Manalapan, New Jersey

Richard A. Miller, Ph.D., P.E.
Professor, Civil Engineering Department
University of Cincinnati
Cincinnati, Ohio

Sidney Mindess, P.Eng.
Professor Emeritus
Civil Engineering Department
University of British Columbia
Vancouver, Canada

Jaime Moreno
President Emeritus
Cement Technology Corporation
Chicago, Illinois

Walid M. Naja, S.E.
Principal
FBA, Inc.
Hayward, California

Husam S. Najm, Ph.D., P.E.
Associate Professor, Civil and Environmental Engineering Department
Rutgers, The State University of New Jersey
Piscataway, New Jersey

Hani Nassif, Ph.D., P.E.
Associate Professor, Civil Engineering Department
Rutgers, The State University of New Jersey
Piscataway, New Jersey

Distinguished Professor, Civil Engineering Department
Rutgers, The State University of New Jersey
Piscataway, New Jersey

Randall W. Poston, Ph.D., P.E.
Principal
WDP & Associates, Inc.
Austin, Texas

B. Vijaya Rangan, Ph.D., FACI, FIEAust, C.P.Eng.
Emeritus Professor, Civil Engineering Department
Dean, Faculty of Engineering
Curtin University of Technology
Perth, Australia

Andrew Scanlon, S.E.
Professor, Civil Engineering Department
The Pennsylvania State University
Williamsport, Pennsylvania

Ernest K. Schrader, Ph.D., FACI
Consultant
Schrader Consulting Engineers
Walla Walla, Washington

Aviad Shapira, D.Sc.
Associate Professor, Construction Engineering and Management
Technion–Israel Institute of Technology
Haifa, Israel

James M. Shilstone, Jr., FACI
President
The Shilstone Companies, Inc.
Dallas, Texas

© 2008 by Taylor & Francis Group, LLC
Contributors

Miroslaw J. Skibniewski, Ph.D.
A. James Clark Chair Professor, Department of Civil and Environmental Engineering
University of Maryland
College Park, Maryland

Michael M. Sprinkel, P.E.
Associate Director
Virginia Transportation Research Council
Charlottesville, Virginia

Jason J. Thompson
Director of Engineering
National Concrete Masonry Association
Herndon, Virginia

David P. Whitney
Research Operations Manager and Research Engineer
Construction Materials Research Group
The University of Texas
Austin, Texas